Fitness Function of Genetic Algorithm in Structural Constraint Optimization
نویسندگان
چکیده
The mathematics models of Reliability-based Structural Optimization (RBSO) were presented in this paper, then how to handle the constraint become sixty-four-dollar question of establishing the fitness function. Based on exterior penalty function method, penalty gene is made adaptively according to population’s evolution, then the fitness function is established, which is mapping formula of objective function and constraints. Subsequently laxity variable is introduced in primary mathematic model, based on Lagrange multiplier method, a new fitness function mapping formula is made, this method can avoid penalty function morbidity by means of adding a Lagrange multiplier, and has a more quick and stable convergence. Then, using GA successfully solved a numerical constrained optimization issue by this two mapping functions. The calculation shows that the two equations are reasonable and efficient, and Lagrange multiplier method has better global optimal capability.
منابع مشابه
Research of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information
Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...
متن کاملResearch of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information
Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...
متن کاملSTRUCTURAL SYSTEM RELIABILITY-BASED OPTIMIZATION OF TRUSS STRUCTURES USING GENETIC ALGORITHM
Structural reliability theory allows structural engineers to take the random nature of structural parameters into account in the analysis and design of structures. The aim of this research is to develop a logical framework for system reliability analysis of truss structures and simultaneous size and geometry optimization of truss structures subjected to structural system reliability constraint....
متن کاملA Hybrid Particle Swarm Optimization and Genetic Algorithm for Truss Structures with Discrete Variables
A new hybrid algorithm of Particle Swarm Optimization and Genetic Algorithm (PSOGA) is presented to get the optimum design of truss structures with discrete design variables. The objective function chosen in this paper is the total weight of the truss structure, which depends on upper and lower bounds in the form of stress and displacement limits. The Particle Swarm Optimization basically model...
متن کاملSEQUENTIAL PENALTY HANDLING TECHNIQUES FOR SIZING DESIGN OF PIN-JOINTED STRUCTURES BY OBSERVER-TEACHER-LEARNER-BASED OPTIMIZATION
Despite comprehensive literature works on developing fitness-based optimization algorithms, their performance is yet challenged by constraint handling in various engineering tasks. The present study, concerns the widely-used external penalty technique for sizing design of pin-jointed structures. Observer-teacher-learner-based optimization is employed here since previously addressed by a number ...
متن کامل